

Welcome to Optimithon’s documentation!

Contents:

	Introduction
	Requirements

	Download

	Installation

	Documentation

	License
	MIT License

	Optimization Problem

	Iterative Optimization Methods

	Derivative Based Methods
	Descent Direction
	Gradient descent direction

	Newton Conjugate Gradient method

	Fletcher-Reeves method

	Polak–Ribiere method

	Hestenes-Stiefel method

	Dai-Yuan method

	Davidon-Fletcher-Powell method

	Broyden-Fletcher-Goldfarb-Shanno method

	Broyden’s method

	Symmetric Rank-One (SR1) method

	Line Search methods
	Barzilai-Borwein method

	Backtrack line search method

	Termination criterion
	Cauchy condition

	Cauchy_x condition

	ZeroGradient condition

	Constrained Optimization
	Barrier Function Method

	Benchmark Problems
	Rosenbrock Function

	Giunta Function

	Parsopoulos Function

	Shubert Function

	McCormick Function

	Code Documentation
	‘base’ Module

	‘QuasiNewton’ Module

	‘NumericDiff’ Module

	‘excpt’ Module

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This code aims to provide flexible and extendable implementation of various standard and experimental optimization
methods. The development is gradual and priority will be given to those methods that seem to be more exciting to
implement (based on personal interests).

This project was mainly motivated by my lake of knowledge in numerical optimization, otherwise there are excellent
(open source) tools for almost every task that a machine can do. This occurred while I was working on an other
scientific project on global optimization irene.rtfd.io [http://irene.readthedocs.io/], which tends to provide a tool
to find a lower bound for the global minimum of a function when the function and constraints are (algebraically) well
presented.

Requirements

Dependencies are minimal as the code is mainly written in python:

	NumPy [http://www.numpy.org/].

	Numdifftools [https://github.com/pbrod/numdifftools] (optional).

Download

Optimithon can be obtained from https://github.com/mghasemi/optimithon.

Installation

To install Optimithon, run the following in terminal:

sudo python setup.py install

Documentation

The documentation is produced by Sphinx [http://www.sphinx-doc.org/en/stable/] and is intended to cover code usage
as well as a bit of theory to explain each method briefly.
For more details refer to the documentation at optimithon.rtfd.io [http://optimithon.readthedocs.io/].

License

This code is distributed under MIT license [https://en.wikipedia.org/wiki/MIT_License]:

MIT License

Copyright (c) 2018 Mehdi Ghasemi

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Optimization Problem

A typical optimization problem can be formulated as

(1)\[\begin{split}\left\lbrace
 \begin{array}{lll}
 \min_x & f(x) & \\
 \textrm{subject to} & & \\
 & g_i(x)\ge0 & i=1,\dots,m\\
 & \textrm{and} & \\
 & h_j(x)=0 & j=1,\dots,k
 \end{array}
\right.\end{split}\]

The problem (1) is called a constrained optimization. If the constraints \(g_i(x)\ge0\) and
\(h_j(x)=0\) are absent then the (1) is called an unconstrained optimization problem.

This package attempts to implement various methods to solve the unconstrained optimization problem.
Then by employing the barrier functions method, the resulted code for unconstrained problem is modified to solve the
general form of (1).

The user interface for both unconstrained and constrained optimization problems is the same, but some parameters are
ignored for unconstrained problems. A minimal code to solve (1) would look like the following:

from Optimithon import Base, QuasiNewton # import the essentials
f = # definition of the objective function
ineqs = [g_i for i in range(m)] # the list of inequality constraints: g_i >= 0.
eqs = [h_j for j in range(k)] # the list of equality constraints: h_j == 0.
OPTIM = Base(f, # the objective function (mandatory)
 ineq=ineqs, # inequality constraints
 eq = eqs, # equality constraints
 x0=x0, # an initial point, a numpy array
)
OPTIM() # run the optimization procedure
print(OPTIM.solution) # show the outcome

Iterative Optimization Methods

The iterative (unconstrained) optimization methods are the most popular optimization methods to approximate a (local)
minimum of a given function. Generally, an iterative method uses a patter like the following:

	With the objective function \(f\) and an initial guess for the minimum \(x=x_0\):

	
	Repeat:

	
	Find a descent direction \(p_n\) at point \(x_n\),

	Find a positive value \(\alpha\) such that \(f(x_n+\alpha p_n)\) is a reasonable decrease compare to \(f(x_n)\),

	Update \(x_{n+1}=x_{n}+\alpha p_n\),

	Until a termination criterion is satisfied.

	Return \(x_n\) as an approximation for a local minimum of \(f\).

Variations of the iterative methods focus on finding a suitable descent direction \(p_n\), as well as suitable
value for \(\alpha\) and a termination strategy.

To determine a suitable direction some methods use first or second (or even higher orders) derivatives of \(f\).
Those methods that do not use derivatives are called derivative free methods.

The derivative base methods are implemented in QuasiNewton module.

Derivative Based Methods

Derivative Based Methods are a class of iterative optimization methods that calculate a descent direction using gradient
and/or hessian of the objective function.

For more details on the methods introduced in this chapter refer to [JNSJW].

	JNSJW(1,2)

	J. Nocedal, S. J. Wright, Numerical Optimization, 2nd ed., Springer, New York, NY, USA (2006).

Descent Direction

The following is the list of implemented methods to find a descent direction.

Gradient descent direction

This method chooses the backward gradient direction to achieve the direction which results in steepest decrease in the
values of the objective function:

\[p_n=-\nabla f(x_n)\]

Newton Conjugate Gradient method

The Newton conjugate gradient method uses the followin descent direction:

\[p_{n+1}=\nabla^2f(x_n)^{-1}\nabla f(x_n),\]

where \(\nabla^2f(x_n)\) is the Hessian of \(f\) at \(x_n\).

Fletcher-Reeves method

The direction suggested by R. Fletcher and C. M. Reeves in 1964 [RFCMR]. Let \(p_0=-\nabla f(x_0)\) and

\[p_n=\frac{\nabla f(x_n)^T\nabla f(x_n)}{\|\nabla f(x_{n-1})\|^2}p_{n-1}-\nabla f(x_n).\]

	RFCMR

	R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Comput. J. 7 (1964), 149–154.

Polak–Ribiere method

Suggested by E. Polak and G. Ribiere in 1969 [EPGR]. Let \(p_0=-\nabla f(x_0)\) and

\[p_n=\frac{\nabla f(x_n)^T(\nabla f(x_n)-\nabla f(x_{n-1}))}{\|\nabla f(x_{n-1})\|^2}p_{n-1}-\nabla f(x_n).\]

	EPGR

	E. Polak and G. Ribiere, Note sur la convergence de directions conjuguee, Rev. Francaise Informat Recherche Operationelle, 3e Annee 16 (1969), 35–43.

Hestenes-Stiefel method

Suggested by M. R. Hestenes and E. Stiefel in 1953 [MRHES]. Let \(p_0=-\nabla f(x_0)\) and

\[p_n=\frac{\nabla f(x_n)^T(\nabla f(x_n)-\nabla f(x_{n-1}))}{(\nabla f(x_n)-\nabla f(x_{n-1}))^Tp_{n-1}}p_{n-1}-\nabla f(x_n).\]

	MRHES

	M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards 49 (1952), 409–436 (1953).

Dai-Yuan method

Suggested by Y.-H. Dai and Y. Yuan in 1999 [YHDYY]. Let \(p_0=-\nabla f(x_0)\) and

\[p_n=\frac{\|\nabla f(x_n)\|^2}{(\nabla f(x_n)-\nabla f(x_{n-1}))p_{n-1}}p_{n-1}-\nabla f(x_n).\]

	YHDYY

	Y.-H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim. 10 (1999), no. 1, 177–182.

Davidon-Fletcher-Powell method

Let \(H_0=\nabla^2f(x_0)^{-1}\) and

\[\begin{split}\begin{array}{lcl}
H_n & = & H_{n-1}+\frac{(x_n - x_{n-1})^T(x_n - x_{n-1})}{(x_n - x_{n-1})^T(\nabla f(x_n)-\nabla f(x_{n-1}))}\\
 & - & \frac{H_{n-1}(\nabla f(x_n)-\nabla f(x_{n-1}))(\nabla f(x_n)-\nabla f(x_{n-1}))^TH_{n-1}}{(\nabla f(x_n)-
\nabla f(x_{n-1}))^TH_{n-1}(\nabla f(x_n)-\nabla f(x_{n-1}))},
\end{array}\end{split}\]

then \(p_n=-H_n\nabla f(x_n)\) (see [WCD] and [RF]).

	WCD

	W. C. Davidon, Variable metric method for minimization, SIAM Journal on Optimization, 1: 1–17 (1991).

	RF(1,2)

	R. Fletcher, Practical methods of optimization (2nd ed.), New York: John Wiley & Sons (1987).

Broyden-Fletcher-Goldfarb-Shanno method

Let \(H_0=\nabla^2f(x_0)^{-1}\) and

\[\begin{split}\begin{array}{lcl}
H_n & = & \left(I-\frac{(x_n - x_{n-1})(\nabla f(x_n)-\nabla f(x_{n-1}))^T}{(\nabla f(x_n)-\nabla f(x_{n-1}))^T(x_n - x_{n-1})}\right)\\
 & \times & H_{n-1}\\
 & \times & \left(I-\frac{(\nabla f(x_n)-\nabla f(x_{n-1}))(x_n - x_{n-1})^T}{(\nabla f(x_n)-\nabla f(x_{n-1}))^T(x_n - x_{n-1})}\right)\\
 & + & \frac{(x_n - x_{n-1})(x_n - x_{n-1})^T}{(\nabla f(x_n)-\nabla f(x_{n-1}))^T(x_n - x_{n-1})},
\end{array}\end{split}\]

then \(p_n=-H_n\nabla f(x_n)\) (see [RF]).

Broyden’s method

Let \(H_0=\nabla^2f(x_0)^{-1}\) and

\[\begin{split}\begin{array}{lcl}
H_n & = & H_{n-1}\\
 & + & \frac{((x_n- x_{n-1})-H_{n-1}(\nabla f(x_n)-f(x_{n-1})))(x_n- x_{n-1})^TH_{n-1}}
{(x_n- x_{n-1})^TH_{n-1}(\nabla f(x_n)-\nabla f(x_{n-1}))},
\end{array}\end{split}\]

then \(p_n=-H_n\nabla f(x_n)\) (see [CGB]).

	CGB

	C. G. Broyden, A Class of Methods for Solving Nonlinear Simultaneous Equations. Math. of Comput. AMS. 19 (92): 577–593 (1965).

Symmetric Rank-One (SR1) method

Let \(H_0=\nabla^2f(x_0)^{-1}\) and

\[\begin{split}\begin{array}{lcl}
H_n & = & H_{n-1}\\
 & + & \frac{((x_n- x_{n-1})-H_{n-1}(\nabla f(x_n)-\nabla f(x_{n-1}))((x_n- x_{n-1})-H_{n-1}(\nabla f(x_n)-\nabla f(x_{n-1}))^T}
 {((x_n- x_{n-1})-H_{n-1}(\nabla f(x_n)-\nabla f(x_{n-1}))^T(\nabla f(x_n)-\nabla f(x_{n-1}))},
\end{array}\end{split}\]

then \(p_n=-H_n\nabla f(x_n)\) (see [RHB]).

	RHB

	R. H. Byrd Analysis of a Symmetric Rank-One Trust Region Method, SIAM J. Optim 6(4) (1996).

Line Search methods

In every iteration, beside finding a descent direction, the algorithm also requires the magnitude of the descent,
denoted by \(\alpha\) in the algorithm. One popular method to find \(\alpha\) is called line search.
The following is the list of line search methods implemented.

Barzilai-Borwein method

The length of the descent direction suggested by Barzilai-Borwein method [JBJMB] is calculated with the following
formula:

\[\alpha=\frac{(x_n- x_{n-1})(\nabla f(x_n)-\nabla f(x_{n-1}))^T}{\|\nabla f(x_n)-\nabla f(x_{n-1})\|^2}.\]

	JBJMB

	J. Barzilai, J. M. Borwein. Two-point step size gradient methods, IMA J. Numerical Analysis, 8(1):141–148 (1988).

Backtrack line search method

Backtrack line search is a generic algorithm relying in various conditions to approximate a suitable magnitude for the
descent direction [JNSJW].

Starting with a maximum candidate step size value \(\alpha_0>0\), using search control parameters
\(\tau\in(0,1)\) and \(c\in(0,1)\), the backtracking line search algorithm can be expressed as follows:

	Set \(t=-cp_n\cdot\nabla f(x_n)\) and iteration counter \(j=0\).

	Until a condition \(\dagger(\alpha_j, t)\) is satisfied, repeatedly increment \(j\) and set \(\alpha_j=\tau\alpha_{j-1}\).

	Return \(\alpha_j\) as the solution.

The \(\dagger\) condition is usually one of the following:

	Wolfe condition: \(p_n\cdot\nabla f(x_n+\alpha_j p_n)\ge t\)

	Armijo condition: \(\alpha_jt\ge f(x_n+\alpha_jp_n)-f(x_n)\)

	
	Goldstein condition:

	
	\(f(x_n)+(1-c)\alpha_jt\leq f(x_n+\alpha_jp_n)\) and

	\(f(x_n+\alpha_jp_n)\leq f(x_n)+\alpha_jt\)

	
	Strong Wolfe condition:

	
	\(f(x_n+\alpha_jp_n)\leq f(x_n)+c_1\alpha_jt\) and

	\(|p_n\nabla f(x_n+\alpha_jp_n)|\leq c_2|t|\) for \(0<c_1<c_2<1\)

	Binary Search method: \(f(x_n+\alpha_jp_n)<f(x_n)\)

Termination criterion

At the end of every iteration a termination criterion is evaluated to decide continuation or break of the loop.
The following is a list of implemented methods:

Cauchy condition

Given the sequence of calculated points \((x_n)\), this condition checks whether the values of the objective are
making enough progress or reached a limit point. In symbols, for \(\varepsilon>0\),

\[|f(x_n)-f(x_{n-1})|<\varepsilon.\]

Cauchy_x condition

Given the sequence of calculated points \((x_n)\), this condition checks whether this sequence is making enough
progress or reached an approximate limit point. In symbols, for \(\varepsilon>0\),

\[\|x_n - x_{n+1}\|<\varepsilon.\]

ZeroGradient condition

This condition checks the size of gradient vector at each point found at the end of iteration. If the gradient vector
is close enough to zero, then it means that the values of the objective will not make significant progress at any
direction. In symbols, for \(\varepsilon>0\),

\[\|\nabla f(x_n)\|<\varepsilon.\]

Note that this condition may not be suitable to solve constrained optimization problems.

Constrained Optimization

It is possible to transform a constrained optimization problem (1) to an unconstrained one with some
conditions on the solutions. A popular method to do so is known as barrier function where the objective function is
modified to penalize the search method if any of the constraints is violated.

Barrier Function Method

Let \(\phi\) be a function that takes over relatively small values (compare to values of \(f\)) over positive
reals and big values for negative ones. Then the function \(f(x)+\sum_{i=1}^m\phi(g_i(x))\) is fairly large values
if \(x\) is outside of the feasibility region. Therefore, it is likely that a search method tends to focus on the
values inside the feasibility region. Similarly, let \(\psi\) be a function that returns large positive values
apart from \(0\). Then \(f(x)+\sum_{j=1}^k\psi(h_j(x))\) is large outside of the feasibility region and rather
small on the feasibility region.

Since the values of continuous functions changes gradually, it seems implausible to be able to choose a function that
successfully accomplish the above task. So, we employ an increasing sequence of positive numbers \((\sigma_n)\)
that approaches to \(+\infty\) and find the optimum value for the function

\[\Lambda_n(x)=f(x)+\frac{1}{\sigma_n}\sum_{i=1}^m\phi(g_i(x))+\sigma_n\sum_{j=1}^k\psi(h_j(x)),\]

then the optimum values of \(\Lambda_n\) approaches the optimum value of \(f\) inside the feasibility region.
Note that if the optimum value is located on the boundary of the feasibility region, this method would only produce an
approximate interior substitute. This is why the method is referred to as interior point method.

The following options for the barrier function are implemented:

	
	For the inequality conditions:

	
	Carrol: is the standard barrier function defined by \(-\frac{1}{g_i(x)}\)

	Logarithmic: is the standard barrier function defined by \(-\log(g_i(x))\)

	Expn: is the standard barrier function defined by \(e^{-g_i(x)+\epsilon}\)

	
	For the equality condition:

	
	Courant: function which is simply defined by \(h_j^2(x)\).

Note

The value of \(\epsilon\) in the code is taken to be equal to \(\epsilon=\frac{1}{\sigma_n}\).

Benchmark Problems

We employ the QuasiNewton class to solve a few benchmark optimization problems.
These benchmarks that are mainly taken from [MJXY].

	MJXY

	M. Jamil, Xin-She Yang, A literature survey of benchmark functions for global optimization problems, IJMMNO, Vol. 4(2) (2013).

Rosenbrock Function

The original Rosenbrock function is \(f(x, y)=(1-x)^2 + 100(y-x^2)^2\)
which is a sums of squares and attains its minimum at \((1, 1)\).
The global minimum is inside a long, narrow, parabolic shaped flat valley.
To find the valley is trivial. To converge to the global minimum, however,
is difficult.
The same holds for a generalized form of Rosenbrock function which is defined as:

\[f(x_1,\dots,x_n) = \sum_{i=1}^{n-1} 100(x_{i+1} - x_i^2)^2+(1-x_i)^2.\]

Since \(f\) is a sum of squares, and \(f(1,\dots,1)=0\), the global
minimum is equal to 0. The following code optimizes the Rosenbrock function
over \(9-x_i^2\ge0\) for \(i=1,\dots,9\):

from Optimithon import Base
from Optimithon import QuasiNewton
from numpy import array

NumVars = 9
fun = lambda x: sum([100 * (x[i + 1] - x[i]**2)**2 +
 (1 - x[i])**2 for i in range(NumVars - 1)])
x0 = array([0 for _ in range(NumVars)])

OPTIM = Base(fun, ineq=[lambda x: 9 - x[i]**2 for i in range(NumVars)],
 br_func='Carrol',
 penalty=1.e6,
 method=QuasiNewton, x0=x0,
 t_method='Cauchy',
 dd_method='BFGS',
 ls_method='Backtrack',
 ls_bt_method='Armijo',
)
OPTIM.Verbose = False
OPTIM.MaxIteration = 1500
OPTIM()
print(OPTIM.solution)

The result is:

objective: 1.55528520803e-11
x: [1.0000001 1.00000013 1.00000013 1.00000005 0.99999996 0.99999993
 1.00000007 0.99999997 0.99999989]
NumIteration: 55
NumFuncEval: 256
success: True
message: Progress in objective values less than error tolerance (Cauchy condition)
RunTime: 0.0378611087799
Family: Quasi-Newton method
Step Size: Backtrack
Backtrack Stop Criterion: Armijo
Descent Direction: BFGS
Termination Criterion: Cauchy
Barrier Function: Carrol
Penalty Factor: 1000000.0

Giunta Function

Giunta is an example of continuous, differentiable, separable, scalable,
multimodal function defined by:

\[\begin{split}\begin{array}{lcl}
f(x_1, x_2) & = & \frac{3}{5} + \sum_{i=1}^2[\sin(\frac{16}{15}x_i-1)\\
 & + & \sin^2(\frac{16}{15}x_i-1)\\
 & + & \frac{1}{50}\sin(4(\frac{16}{15}x_i-1))].
\end{array}\end{split}\]

The following code optimizes \(f\) when \(1-x_i^2\ge0\):

from Optimithon import Base
from Optimithon import QuasiNewton
from numpy import array, sin

fun = lambda x: .6 + (sin((16. / 15.) * x[0] - 1) + (sin((16. / 15.) * x[0] - 1))**2 + .02 * sin(4 * ((16. / 15.) * x[0] - 1))) + (
 sin((16. / 15.) * x[1] - 1) + (sin((16. / 15.) * x[1] - 1))**2 + .02 * sin(4 * ((16. / 15.) * x[1] - 1)))
x0 = array([0 for _ in range(2)])

OPTIM = Base(fun, ineq=[lambda x: 1 - x[i]**2 for i in range(2)],
 br_func='Carrol',
 penalty=1.e6,
 method=QuasiNewton, x0=x0,
 t_method='Cauchy_x',
 dd_method='BFGS',
 ls_method='Backtrack',
 ls_bt_method='Armijo',
)
OPTIM.Verbose = False
OPTIM.MaxIteration = 1500
OPTIM()
print(OPTIM.solution)

The output looks like:

objective: 0.0644704205391
x: [0.46732003 0.46731857]
NumIteration: 8
NumFuncEval: 20
success: True
message: The progress in values of points is less than error tolerance (0.000000)
RunTime: 0.0011510848999
Family: Quasi-Newton method
Step Size: Backtrack
Backtrack Stop Criterion: Armijo
Descent Direction: BFGS
Termination Criterion: Cauchy_x
Barrier Function: Carrol
Penalty Factor: 1000000.0

Parsopoulos Function

Parsopoulos is defined as \(f(x,y)=\cos^2(x)+\sin^2(y)\).
The following code computes its minimum where \(-5\leq x,y\leq5\):

from Optimithon import Base
from Optimithon import QuasiNewton
from numpy import array, sin, cos

fun = lambda x: cos(x[0])**2 + sin(x[1])**2
x0 = array((1., -2.))

OPTIM = Base(fun, ineq=[lambda x: 25. - x[j]**2 for j in range(2)],
 br_func='Carrol',
 penalty=1.e6,
 method=QuasiNewton, x0=x0,
 t_method='Cauchy_x',
 dd_method='BFGS',
 ls_method='BarzilaiBorwein',
)
OPTIM.Verbose = False
OPTIM.MaxIteration = 1500
OPTIM()
print(OPTIM.solution)

The solution is the following:

objective: 7.48150734385e-16
x: [1.57079633 -3.14159263]
NumIteration: 33
NumFuncEval: 36
success: True
message: The progress in values of points is less than error tolerance (0.000000)
RunTime: 0.00488901138306
Family: Quasi-Newton method
Step Size: BarzilaiBorwein
Descent Direction: BFGS
Termination Criterion: Cauchy_x
Barrier Function: Carrol
Penalty Factor: 1000000.0

Shubert Function

Shubert function is defined by:

\[f(x_1,\dots,x_n) = \prod_{i=1}^n\left(\sum_{j=1}^5\cos((j+1)x_i+i)\right).\]

It is a continuous, differentiable, separable, non-scalable, multimodal function.
The following code compares the result of five optimizers when \(-10\leq x_i\leq10\)
and \(n=2\):

from Optimithon import Base
from Optimithon import QuasiNewton
from numpy import array, cos

fun = lambda x: sum([cos((j + 1) * x[0] + j) for j in range(1, 6)]) * \
 sum([cos((j + 1) * x[1] + j) for j in range(1, 6)])
x0 = array((1., -1.))

OPTIM = Base(fun, ineq=[lambda x: 100. - x[i]**2 for i in range(2)],
 br_func='Carrol',
 penalty=1.e6,
 method=QuasiNewton, x0=x0,
 t_method='Cauchy',
 dd_method='Gradient',
 ls_method='Backtrack',
 ls_bt_method='Armijo',
)
OPTIM.Verbose = False
OPTIM.MaxIteration = 1500
OPTIM()
print(OPTIM.solution)

which results in:

objective: -18.09556507
x: [-7.06139727 -1.47136939]
NumIteration: 51
NumFuncEval: 1021
success: True
message: Progress in objective values less than error tolerance (Cauchy condition)
RunTime: 2.48312807083
Family: Quasi-Newton method
Step Size: Backtrack
Backtrack Stop Criterion: Armijo
Descent Direction: Gradient
Termination Criterion: Cauchy
Barrier Function: Carrol
Penalty Factor: 1000000.0

McCormick Function

McCormick function is defined by

\[f(x, y) = \sin(x+y) + (x-y)^2-1.5x+2.5y+1.\]

Attains its minimum at \(f(-.54719, -1.54719)\approx-1.9133\):

from Optimithon import Base
from Optimithon import QuasiNewton
from numpy import array, sin
from scipy.optimize import minimize

fun = lambda x: sin(x[0] + x[1]) + (x[0] - x[1]) ** 2 - 1.5 * x[0] + 2.5 * x[1] + 1.
x0 = array((0., 0.))

OPTIM = Base(fun,
 method=QuasiNewton, x0=x0, # max_lngth=100.,
 t_method='Cauchy_x', # 'Cauchy_x', 'ZeroGradient',
 dd_method='BFGS',
 # 'Newton', 'SR1', 'HestenesStiefel', 'PolakRibiere', 'FletcherReeves', 'Gradient', 'DFP', 'BFGS', 'Broyden', 'DaiYuan'
 ls_method='Backtrack', # 'BarzilaiBorwein', 'Backtrack',
 ls_bt_method='Armijo', # 'Armijo', 'Goldstein', 'Wolfe', 'BinarySearch'
)
OPTIM.Verbose = False
OPTIM.MaxIteration = 1500
OPTIM()
print(OPTIM.solution)

The output will be:

objective: -1.91322295498
x: [-0.54719755 -1.54719755]
NumIteration: 9
NumFuncEval: 23
success: True
message: The progress in values of points is less than error tolerance (0.000000)
RunTime: 0.000735998153687
Family: Quasi-Newton method
Step Size: Backtrack
Backtrack Stop Criterion: Armijo
Descent Direction: BFGS
Termination Criterion: Cauchy_x
Barrier Function: Carrol
Penalty Factor: 100000.0

Code Documentation

‘base’ Module

This module implements general containers for typical optimization methods.

	
class base.Base(obj, **kwargs)

	This is the base class that serves all the iterative optimization methods.
An object derived from Base requires the following parameters:

	Parameters

	
	obj – MANDATORY- is a real valued function to be minimized

	x0 – an initial guess of the optimal point

	method – the optimization class which implements iterate and terminate procedures (default: OptimTemplate that returns the value of the function at the initial point x0)

	Verbose – Boolean- If True prompts messages at every stage of the iteration as well as termination

	kwargs – the rest of parameters that will ba passed to method

The object then passes all other given parameters to the method class for further processes.
When a termination condition is satisfied, the object fills the results in the solution attribute which is an
instance of Solution class. The given class method can pass arbitrary pieces of information to the solution
by modifying its MetaData dictionary.

When an object optim of type Base initiated, the optimization process can be invoked by calling the object
itself like a function:

optim = Base(f, method=QuasiNewton, x0=init_point)
optim()
print(optim.solution)

	
class base.OptimTemplate(obj, **kwargs)

	Provides a template for an iterative optimization method.

	Parameters

	
	obj – a real valued function (objective function)

	x0 – an initial guess for a (local) minimum

	jac – a vector calculating the gradient of the objective function (optional, if not given will be numerically approximated)

	difftool – an object to calculate Gradient and Hessian of the objective (optional, default NumericDiff.Simple)

	
class base.Solution

	A class to keep outcome and details of the optimization run.

‘QuasiNewton’ Module

This module contains implementations of variations of unconstrained optimization methods known as Quasi-Newton methods.
A Quasi-Newton method is an iterative algorithm that approximates a local minima of the objective function.
Starting with a given initial point x0, each iteration consists of three major subprocedures:

	Finding a descent direction (via DescentDirection class)

	Finding the length of descent (using LineSearch class)

	Check the termination condition (Termination class).

The right strategy to attempt an optimization problem must be pre-determined, otherwise, it uses a default set up to
solve the problem.

	
class QuasiNewton.Barrier(QNRef, **kwargs)

	Implementation of some barrier functions to be used for constrained optimization problems.
Three barrier functions are implemented:

	Carrol: is the standard barrier function defined by \(-\frac{1}{g_i(x)}\)

	Logarithmic: is the standard barrier function defined by \(-\log(g_i(x))\)

	Expn: is the standard barrier function defined by \(e^{-g_i(x)+\epsilon}\)

The only barrier function implemented for the equality is the typical function known as Courant function
which is simply \(h_j^2(x)\).

The default barrier function is Carrol and the default penalty factor is 10^{-5}. To specify the barrier function
and penalty factor initiate the optimizer with keywords br_func that accepts one of the above three values and
penalty that must be a positive real number.

	
class QuasiNewton.DescentDirection(QNRef, **kwargs)

	Implements various descent direction methods for Quasi-Newton methods. The descent method can be determined at
initiation using dd_method parameter. The following values are acceptable:

	‘Gradient’: (default) The steepest descent direction.

	‘Newton’: Newton Conjugate Gradient method.

	‘FletcherReeves’: Fletcher-Reeves method.

	‘PolakRibiere’: Polak-Ribiere method.

	‘HestenesStiefel’: Hestenes-Stiefel method.

	‘DaiYuan’: Dai-Yuan method

	‘DFP’: Davidon-Fletcher-Powell formula.

	‘BFGS’: Broyden-Fletcher-Goldfarb-Shanno algorithm.

	‘Broyden’: Broyden’s method.

	‘SR1’: Symmetric rank-one method.

To calculate derivatives, the QuasiNewton class uses the object provided as the value of the difftool variable
at initiation.

	
BFGS()

	
	Returns

	the descent direction determined by Broyden-Fletcher-Goldfarb-Shanno algorithm

	
Broyden()

	
	Returns

	the descent direction determined by Broyden’s method

	
DFP()

	
	Returns

	the descent direction determined by Davidon-Fletcher-Powell formula

	
DaiYuan()

	
	Returns

	the descent direction determined by Dai-Yuan method

	
FletcherReeves()

	
	Returns

	the descent direction determined by Fletcher-Reeves method

	
Gradient()

	
	Returns

	the gradient at current point

	
HestenesStiefel()

	
	Returns

	the descent direction determined by Hestenes-Stiefel method

	
Newton()

	
	Returns

	the descent direction determined by Newton Conjugate Gradient method

	
PolakRibiere()

	
	Returns

	the descent direction determined by Polak-Ribiere method

	
SR1()

	
	Returns

	the descent direction determined by Symmetric rank-one method

	
class QuasiNewton.LineSearch(QNref, **kwargs)

	This class provides the step length at each iteration. The value of ls_bt_method at initiation determines whether
to use ‘BarzilaiBorwein’ method or a variation of ‘Backtrack’ (default). It accepts a control parameter tau
and max_lngth at initiation. tau must be a positive real less than 1.
The variation of the backtrack is then determined by the value of ls_bt_method which can be selected among
the following:

	‘Armijo’: indicates Armijo condition and the parameter c1 can be modified at initiation as well.

	‘Wolfe’: indicates Wolfe condition and the parameters c1 and c2 can be modified at initiation.

	‘StrongWolfe’: indicates StrongWolfe condition and the parameters c1 and c2 can be modified at initiation.

	‘Goldstein’: indicates Goldstein condition and the parameter c1 can be modified at initiation.

	
Armijo(alpha, ft_x, tx)

	Implementation of Armijo.

	Parameters

	
	alpha – current candidate for step length

	ft_x – value of the objective at the candidate point

	tx – the candidate point

	Returns

	True or False

	
Backtrack()

	A generic implementation of Backtrack.

	Returns

	step length

	
BarzilaiBorwein()

	Implementation of Barzilai-Borwein.

	Returns

	step length

	
Goldstein(alpha, ft_x, tx)

	Implementation of Goldstein.

	Parameters

	
	alpha – current candidate for step length

	ft_x – value of the objective at the candidate point

	tx – the candidate point

	Returns

	True or False

	
StrongWolfe(alpha, ft_x, tx)

	Implementation of Strong Wolfe.

	Parameters

	
	alpha – current candidate for step length

	ft_x – value of the objective at the candidate point

	tx – the candidate point

	Returns

	True or False

	
Wolfe(alpha, ft_x, tx)

	Implementation of Wolfe.

	Parameters

	
	alpha – current candidate for step length

	ft_x – value of the objective at the candidate point

	tx – the candidate point

	Returns

	True or False

	
class QuasiNewton.QuasiNewton(obj, **kwargs)

	
	Parameters

	
	obj – the objective function

	ineq – (optional) list of inequality constraints, default: []

	eq – (optional) list of equality constraints, default: []

	ls_method – (optional) the line search strategy, default: Backtrack

	ls_bt_method – (optional) the backtrack termination condition, default: Armijo

	dd_method – (optional) the descent direction method, default: Gradient

	t_method – (optional) termination condition, default: Cauchy

	br_func – (optional) barrier function family, default: Carrol

	penalty – (optional) penalty factor for the barrier function, default: 1.e5

	max_iter – (optional) maximum number of iterations, default: 100

This class hosts a family of first and second order iterative methods to solve an unconstrained optimization
problem. The general schema follows the following steps:

	Given the point \(x\), find a suitable descent direction \(p\).

	Find a suitable length \(\alpha\) for the direction \(p\) such that \(x+\alpha p\) results in an appropriate decrease in values of the objective.

	Update \(x\) to \(x+\alpha p\) and repeat the above steps until a termination condition is satisfied.

The initial value for x can be set at initiation by passing x0=init_point to the Base instance.
There are various methods to determine the descent direction p at each step. The DescentDirection class
implements a variety of these methods. To choose one of these methods one should pass the method by its known name
at initiation simply by setting dd_method=’method name’. This parameter will be passed to DescentDirection
class (see the documentation for DescentDirection). Also, to determine a suitable value for \(alpha\) various
options are available the class LineSearch is responsible for handling the computation for \(alpha\).
The parameters ls_method and ls_bt_method can be set at initiation to determine the details for line search.
The termination condition also can vary and the desired condition can be determined by setting t_method at
initiation which will be passed to the Termination class.
Each of these classes may accept other parameters that can be set at initiation. To find out about those parameter
see the corresponding documentation.

	
iterate()

	This method updates the iterate method of the OptimTemplate by customizing the descent direction method
as well as finding the descent step length. These method can be determined by the user.

	Returns

	None

	
terminate()

	This method updates the terminate method of the OptimTemplate which is given by user.

	Returns

	True or False

	
class QuasiNewton.Termination(QNRef, **kwargs)

	Implements various termination criteria for Quasi-Newton loop. A particular termination method can be selected
at initiation of the Base object by setting t_method with the name of the method as an string. The following
termination criteria are implemented:

	‘Cauchy’: Checks of the changes in the values of the objective function are significant enough or not.

	‘ZeroGradient’: Checks if the gradient of the objective is close to zero or not.

The value of the tolerated error is a property of OptimTemplate and hence can be modified as desired.

	
Cauchy()

	Checks if the values of the objective function form a Cauchy sequence or not.

	Returns

	True or False

	
Cauchy_x()

	Checks if the sequence of points form a Cauchy sequence or not.

	Returns

	True or False

	
ZeroGradient()

	Checks if the gradient vector is small enough or not.

	Returns

	True or False

‘NumericDiff’ Module

This module provides very basic way to numerically approximate partial derivatives, gradient and Hessian of a function.

	
class NumericDiff.Simple(**kwargs)

	A simple class to calculate partial derivatives of a given function.
Passing a value for Infinitesimal forces the calculations to be done according to the infinitesimal value
provided by user. Otherwise, the default value (1.e-7) is used.

	
Diff(f, i=0)

	
	Parameters

	
	f – a real valued function

	i – the index variable for differentiation

	Returns

	partial derivative of \(f\) with respect to :math:’i^{th}` variable as a function.

	
Gradient(f)

	
	Parameters

	f – a real valued function

	Returns

	a vector function that returns the gradient vector of f at each point.

	
Hessian(f)

	
	Parameters

	f – a real valued function

	Returns

	the Hessian matrix of \(f\) at each point

‘excpt’ Module

This module provides descriptive exception for the other modules.

	
exception excpt.DiffEror(*args)

	Errors that may have happened while calculating derivatives of functions.

	
exception excpt.DirectionError(*args)

	Handles the errors caused during the computation of a descent direction.

	
exception excpt.Error(*args)

	Generic errors that may occur in the course of a run.

	
exception excpt.MaxIterations(*args)

	Errors caused by reaching the preset maximum number of iterations.

	
exception excpt.Undeclared(*args)

	Raised when an undeclared function is used.

	
exception excpt.ValueRange(*args)

	Errors resulted from computations over unauthorized regions.

 Python Module Index

 b |
 e |
 n |
 q

 		 	

 		
 b	

 	
 	
 base	

 		 	

 		
 e	

 	
 	
 excpt	

 		 	

 		
 n	

 	
 	
 NumericDiff	

 		 	

 		
 q	

 	
 	
 QuasiNewton	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	Armijo() (QuasiNewton.LineSearch method)

B

 	
 	Backtrack() (QuasiNewton.LineSearch method)

 	Barrier (class in QuasiNewton)

 	BarzilaiBorwein() (QuasiNewton.LineSearch method)

 	
 	Base (class in base)

 	base (module)

 	BFGS() (QuasiNewton.DescentDirection method)

 	Broyden() (QuasiNewton.DescentDirection method)

C

 	
 	Cauchy() (QuasiNewton.Termination method)

 	
 	Cauchy_x() (QuasiNewton.Termination method)

D

 	
 	DaiYuan() (QuasiNewton.DescentDirection method)

 	DescentDirection (class in QuasiNewton)

 	DFP() (QuasiNewton.DescentDirection method)

 	
 	Diff() (NumericDiff.Simple method)

 	DiffEror

 	DirectionError

E

 	
 	Error

 	
 	excpt (module)

F

 	
 	FletcherReeves() (QuasiNewton.DescentDirection method)

G

 	
 	Goldstein() (QuasiNewton.LineSearch method)

 	
 	Gradient() (NumericDiff.Simple method)

 	(QuasiNewton.DescentDirection method)

H

 	
 	Hessian() (NumericDiff.Simple method)

 	
 	HestenesStiefel() (QuasiNewton.DescentDirection method)

I

 	
 	iterate() (QuasiNewton.QuasiNewton method)

L

 	
 	LineSearch (class in QuasiNewton)

M

 	
 	MaxIterations

N

 	
 	Newton() (QuasiNewton.DescentDirection method)

 	
 	NumericDiff (module)

O

 	
 	OptimTemplate (class in base)

P

 	
 	PolakRibiere() (QuasiNewton.DescentDirection method)

Q

 	
 	QuasiNewton (class in QuasiNewton)

 	(module)

S

 	
 	Simple (class in NumericDiff)

 	Solution (class in base)

 	
 	SR1() (QuasiNewton.DescentDirection method)

 	StrongWolfe() (QuasiNewton.LineSearch method)

T

 	
 	terminate() (QuasiNewton.QuasiNewton method)

 	
 	Termination (class in QuasiNewton)

U

 	
 	Undeclared

V

 	
 	ValueRange

W

 	
 	Wolfe() (QuasiNewton.LineSearch method)

Z

 	
 	ZeroGradient() (QuasiNewton.Termination method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Optimithon’s documentation!

 		
 Introduction

 		
 Requirements

 		
 Download

 		
 Installation

 		
 Documentation

 		
 License

 		
 MIT License

 		
 Optimization Problem

 		
 Iterative Optimization Methods

 		
 Derivative Based Methods

 		
 Descent Direction

 		
 Gradient descent direction

 		
 Newton Conjugate Gradient method

 		
 Fletcher-Reeves method

 		
 Polak–Ribiere method

 		
 Hestenes-Stiefel method

 		
 Dai-Yuan method

 		
 Davidon-Fletcher-Powell method

 		
 Broyden-Fletcher-Goldfarb-Shanno method

 		
 Broyden’s method

 		
 Symmetric Rank-One (SR1) method

 		
 Line Search methods

 		
 Barzilai-Borwein method

 		
 Backtrack line search method

 		
 Termination criterion

 		
 Cauchy condition

 		
 Cauchy_x condition

 		
 ZeroGradient condition

 		
 Constrained Optimization

 		
 Barrier Function Method

 		
 Benchmark Problems

 		
 Rosenbrock Function

 		
 Giunta Function

 		
 Parsopoulos Function

 		
 Shubert Function

 		
 McCormick Function

 		
 Code Documentation

 		
 ‘base’ Module

 		
 ‘QuasiNewton’ Module

 		
 ‘NumericDiff’ Module

 		
 ‘excpt’ Module

_static/up-pressed.png

_static/up.png

